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SENSITIVITY ANALYSIS

FOR
STATIONARY PROBABILITIES OF A MARKOV CHAIN

by

Peter W. Glynn

University of Wisconsin

ABSTRACT

This paper considers the problem of evaluating the sensitivity of a

steady-state cost a(O) to underlying uncertainty in a parameter vector e
governing the probabilistic dynamics of the system under consideration. We

show that the gradient Va(e) plays a fundamental role in the parametric

statistical theory for Markov processes. We then survey numerical methods

available for evaluating Va(e) and introduce a new Monte Carlo estimator

for Va(O), which is applicable to Markov processes of substantial

generality.
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1. INTRODUCTION

Let X - {X : n > 0} be an irreducible positive recurrent Markov
n -

chain governed by a transition kernel P(), where e is a parameter

vector taking values in Id. If n(9) is the stationary measure of

P(e) and f(e,x) is the cost of running the chain while in state x, then

a(O) S ff(e,x) n(O,dx) is the long-run average cost of running X under

parameter choice e. In many applications settings, it is of interest to

compute the sensitivity of a to (infinitesimal) changes in the parameter

0. Specifically, it is frequently useful to be able to evaluate Va(e),
dthe gradient of a(-) evaluated at 0 e I . Since it is generally

impossible to analytically evaluate Vc(e) (except for simple models), this

paper will concentrate on numerical methods for determining Va(e).

This paper is organized as follows. In Section 2, we introduce an

important statistical application for these methods. We show that the

numerical methods discussed here offer the opportunity to do statistical

point, variance, and interval estimation for highly complex functionals of

analytically intractable Markov processes. Section 3 is devoted to the

formal derivation of an expression for Va(e) and describes, for finite

state Markov chains, a set of linear equations which characterizes Va(e).

For complicated stochastic processes, the corresponding linear systems are

too complex to solve via standard numerical methods, and Monte Carlo

techniques therefore become relevant. Thus, Section 4 provides a (new)

Monte Carlo estimator for Va(e), which is applicable to Markov chains of

*" substantial generality. Finally, Section 5 offers a brief summary of the

paper.
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2. STATISTICAL RELEVANCE OF THE GRADIENT

Suppose that the transition kernel P governing the Markov chain X

is determined by a finite family of distributions (FI ... , Fn ) =

(F (y ), ..., Fm (y m)), where each Fi(yi) is a probability distribution

associated with a known parametric family in which yi c 1 di. If
= (Y9 '..., ym), then P can be viewed as a function of 0, namely

I P =P(e).

In statistical contexts, the vector 0 c I (d - dI + *so + d )

is, in general, unknown. Most of the literature on statistical inference

for Markov processes has concentrated on estimation of the "true" parameter

0* (i.e., estimation of 8 when the observed chain X is governed by

P(O*)) and on related issues such as production of variance estimates and

confidence intervals. However, in many applications settings, it is of

more practical importance to estimate not 8* but some associated steady-

state cost a(O*).

(2.1) EXAMPLE. Let X = {X : n > 0) be the Markov chain consisting of
n

waiting times of consecutive customers in the M/M/I/- queue. (See HEYMAN

and SOBEL (1982) for a description.) Arrivals follow an exp(yI) distri-

bution, whereas service times are distributed exp(y 2). Suppose that the

long-run customer waiting time a(8) is of importance, when 8 - (yiY 2).

The objective is to produce estimates for a(e*), as well as variance and

interval estimates, from observed inter-arrival times Y 111 .. 0, YnI as

well as observed service times Y21' ' Y2n 2 " Note that in certain set-

tings, the inter-arrival times and service times may have been collected

from two independent sources, so that no waiting times for the system are

available. For example, the queue might correspond to a telephone switch-

ing system being designed, in which historical inter-arrival data exists

and service time data for the proposed switching device is available.
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(2.2) EXAMPLE. Virtually any general discrete-event stochastic system can

be formulated as a generalized semi-Markov process (GSMP). A GSMP can,

in turn, be viewed as a Markov chain X - {X : n > 0), where Xn - (S n,C)Snn nn

records the "physical state" Sn (e.g., configuration of customers in a

n
*='i queue) and clock readings C (e.g., remaining service times for each of

n th
the customers in the system) at the n transition of the GSMP. (For

further details, see GLYNN (1983).) GSMP's are characterized probabilis-

tically by certain distributions F1, ..., F, governing the way clocks are

reset (e.g., service times in a queue) and by routing probabilities

P19 ..., Pk (e.g., the proportion of customers who visit station j after

receiving service at station i).

In many applications environments, the distributions F1 , F2, ..., Ft

and routing probabilities PI' "''' Pk are unknown and must be estimated

via statistical methods. If one models the distributions Fi. ..., FI as

belonging to parametric families (i.e., Fi - Fi(y )), then the transition

function P governing X can be viewed as P - P(O), where e -

(y1' " y, p, .' " ) . The performance of a stochastic system is

often assessed by considering a long-run average cost a for the system
which, in this context, can be regarded as a function a - a(e) of the

unknown parameter e associated with P. Consequently, an important

statistical objective involves point and interval estimation of a(e*),

where e* is the "true" parameter governing the system.

We will now outline a method for obtaining point and interval

estimates for a(O*), which is applicable to very general stochastic

systems. Let 1 ( (n), ... , d (n d)) be an estimator for * =

(e, ... , 0*) (n is the sample size associated with estimation
1'd i

of 0.) Such estimators e are frequently available for complex systems.
i

In particular, one can often appeal to maximum likelihood estimation (MLE)

methods for estimating e*. Under very general conditions, e will be
asymptotically normal, in the sense that

(2.3) e Z N(e*, C(nl, ... , nd))

I3
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where N(B*, C(nl, ... , n d)) is a multivariate normal r.v. with mean 0*

and covariance matrix C(nI, ... , n d). ( q denotes "has approximately

the distribution of".) In certain design settings (see Example 2.1), the

data for each of the different components 0* is gathered from indepen-
i

dent sources. In this case, C(nl, ..., nd ) takes the diagonal form

A' ,,i (2.4) C(n1 , ..., nd) - (. 2

O2
''0 a2/n d

If a is continuously differentiable in a neighborhood of 8*, then a

Taylor expansion of a around 0* shows that (2.3) yields

(2.5) a(g) 9 N(a(O*), Va(@*) C(nI, ... , n d ) Va(8*))

X2.' .where Va(B*) is the (column) gradient of a evaluated at @*. (This is

the so-called "delta method" of statistics.)

Relation (2.5) shows that if n i , ... , nd are large, then a(6 ) is

a good point estimator for a(O*). Let C(nl, ..., nd ) be an estimator

for C(n1 , ..., nd ) (such variance estimators are commonly available for

MLE point estimates ). Then, (2.5) proves that

I:; "(2.6) V = a(e)t &n , ... n ) va(b)

is an estimator for the variance of a(O) and,

1L/2 1/2)

(2.7) [a(9) - z(6)v /  a( g) + z(6)v1 }

4
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is an approximate 100(1-6)% confidence interval for a(9*), where z(6)

is the solution of P{N(0,1) < z(6)} - I - 6/2. Thus, provided that a(4)

and Va(G) can be evaluated (either analytically or numerically), (2.6)

and (2.7) provide a solution to the variance and interval estimation

problems discussed above.

In the case that the covariance matrix C(nl, ... , n ) takes the

form (2.4), v can be expressed as

d
(2.8) v a ( 6 ) 2  /2 niI- Fei

Relation (2.8) shows that the contribution of uncertainty in G* to the
a(2) is given by 2 *2

variance of a5 isgiveny((/ i/ni . This can be used to

determine which component to additionally sample if the current estimator

of a(e*) is too "noisy."

(2.1) EXAMPLE (continued). Because of the simplicity of the M/M/1/m

queue, a can be analytically determined in closed form, namely a(Y1 ,y2) -

Y2(Y2-Y 1 for Y1 < Y2 (- for y > Y2). If ;1 < ;2' (2.8) reduces
4. ~to2 12-

-2 -2

v 2 ;/n + _ 2/n
w 2 22

where ;i(a 2) is a variance estimate for yl(Y 2
)  formed from

III YnIY21' 2n2
For more complicated systems, such as that described in Example 2.2,

a(.) cannot be determined analytically, and so one must turn to numerical

algorithms. These algorithms will be described in the remaining sections

of this paper.
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3. A FORMULA FOR THE GRADIENT OF THE STEADY-STATE

Let P(e) be the transition function for X under parameter e, so

that P(e,x,A) is the corresponding conditional probability that Xn+1 " A,

given that X = x. For an initial distribution i(9), let P be then

probability measure on the path-space of X associated with P(e), namely

P{X0 A0c , ... , Xn c An = j (edx 0) f P(e'x0,dxl) '" f P(,x n-1dx )
A0  A 1  A n

' If X is Harris recurrent under P(e) (see REVUZ (1984)), then there

exists a unique probability measure n(e) such that

n-I
(3.1) n1 f8,Xk) f f(e,x) n(e,dx) Po a.s.

k=0 S

as n * (for a large class of f()'s). The measure n(e) is stationary

for P(G), in the sense that

(3.2) f(e,.) - P(O,x,-) i(O,dx)
S

(S is the state space of X.) In fact, n(9) is the unique probability

measure satisfying (3.2). Our goal is to numerically compute a(e) and

Va(e), where a(e) is the steady-state limit

(3.3) a(e) - f f(e,x) n(O,dx)
S

Since (3.2) only determines n(O) up to a multiplicative constant, it

is necessary to add an additional constraint stating that the total mass

.(e,S) equals 1. The quantity a(8) is then the unique solution of the

integral equation system

6
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z(e,.) = f P(e,x,.) .(e,dx)
S

(3.4) n(eS) . 1

a( E) - f f(e,x) n( e,dx)
S

The system (3.4) is well known and has been extensively studied. If S is

finite, then P(O) is a finite matrix and (3.4) becomes

t tn(e) t = n(O) P(e)

(3.5) (e) t e 1 1

a(O) = (e) t f(e)

(all vectors are column vectors; e is the vector consisting of l's).

As we shall see, a similar system describes the gradient Va(e) of

A ./ a. Let us formally suppose that the transition function P(O) can be

- expanded as

P(O + he ) i  P(e) + hQ1 () + o(h)
i weri i sth t

th dwhere e is the i unit vector in I . Assume that (O+he ) is
ii

formally differentiable at h - 0, so that there exists a signed measure

7i(0) such that

(3.6) n(e + he i) - (e) + h 1 (0) + o(h)

The stationarity equation (3.2) implies that n (e) must satisfy
* 4i

(3.7) 71 ei,dx) - - 1(pe,dx) P(O,x,.) - f Q(e,x,.) n(e,dx)
s s

7
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(formally differentiate both sides of (3.2)). (The equation (3.7) is

Poisson's equation for the kernel P(e).) These formal calculations can be

made rigorous, even in general state space; such arguments will appear

elsewhere.

In finite state space, the arguments are more straightforward and have

previously appeared in SCHWEITZER (1968), GOLUB and MEYER (1986), and MEYER

and STEWART (1986). We give a very elementary proof in the Appendix to

this paper; our argument uses only elementary Markov chain theory. Note

that in finite state space, (3.7) becomes n i() t(I-P(e)) = n(8)tiie)

This does not uniquely identify Ti(0), since -ni(0) + W(e) also

satisfies the equation, for all 6. Note that since n(8) te = 1 for all

8, it follows that n (8) te - 0 (see (3.6)). Let 1(8) be the matrix in
i

which all rows are identical to n(8). It is easily verified that since
ri (8)te - 0, n i()t 71(8) = 0. Consequently, i (8) also satisfies

(3.8) 71 (8)t(1 - p(a) + n(e)) = n(G)t Q0 ) .
i

4 .
It is well known (see KEMENY and SNELL (1960), p. 100) that (I-P(e)+1(8))

has an inverse, called the fundamental matrix, which we shall denote F(O).

Hence, in finite state space, the it h  component of Va(8) can be

computed as the solution of the system

(3.9) T) (e) 
t 

- n(e)t Qi(e) F(e)

(3.9) - a(e) = n( e )t fi(e) + ni(8))t f(e)

th
where f'(8) is the vector in which the j component is bf(8,J)/60

i
Consequently, when S is finite, the systems of linear equations

(3.5) and (3.9) may be solved numerically to obtain a(9) and Va(8). If

S is not finite (or if the number of elements in S is large), numerical

methods not dependent on explicit solution of linear equations must be

considered. In the next section, we show how Monte Carlo methods can be

used to advantage here.

8
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4. MONTE CARLO EVALUATION OF STEADY-STATE GRADIENTS

A critical assumption underlying the analysis of this section is that

it is possible to generate sample trajectories of X under the measure

Pe. For the examples that we have in mind (see particularly Example 2.2),

this assumption is clearly in force.

Assuming now that X has distribution PG, relation (3.1) states

that

n-i

(4.1) n I f(9'Xk) k a(e) P a.s.
k=O

as n -) o. In other words, rather than solving the integral equation
system (3.4), one may numerically approximate a(9) by the sample average

appearing on the left-hand side of (4.1). The simplicity of this numerical

procedure, as well as its broad applicability, is the source of the power

of the Monte Carlo method. Our objective here is to obtain a similar Monte

Carlo algorithm for evaluation of the gradient Va(e).

Observe that (at least formally) we have

(4.2) ge-a(8) - J - f(9,x) %( e,dx) + f f( e,x) T ( ,dx)
i sb i S

A Monte Carlo estimator for the first term appearing on the right-hand side

-" (4.2) is given by the sample mean

n-i

I (4.3) 1 n-1 Lf
k-O i91

It remains to obtain an estimator for the second term.

As in the finite state space context, one expects that the signed

measure n 1(0) will satisfy i (9,S) - 0. As a consequence, it follows

from (3.7) that n (0) should satisfy

9



(4.4) n(0,. - n ,dx) P( O,x, *) + f T1(8,dx) nt( ,)
SS S

f Qi ( G,x,-) n( O,ax)
Si

Letting rl(O) be the operator rl(@,x,*) -i(),one can write (4.4)

symbolically as

(4.5) TI Ij)( - P( @)+ fI(0)) n ,t) Q()

(This is the general state space analogue of (3.8).) The formal inverse of

(I-P(9)+nI(6)) is given by

S(P(O) - f(o)) k
k=0

Because of the stationarity of it(G) and the independence of F(6,x,)
k k

from x, it follows that (P(@)-11()) = P(O) _ r(e), for k > 1. Hence,

a formal analysis of (4.5) shows that

TI (8 n(o) Q Ce() + I n(e) Q i(e)(P k(Q) - IX 8))
i k=1*

For the same reason that r (9,S) - 0, Q (O~xS) -0 and hence

ON QiMil( = 0. Consequently,

(4.6) 7) (O)f(e) = n(e) Q (a) p(O) kf(e)
k-0

Suppose that the measures P(.,x,dy) are absolutely continuous with

respect to P(8,x,dy) in a neighborhood of 8. Then, one expects that

10
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SQi(e,x,dy) has a density with respect to P(O,x,dy), call it qi(e,x,y). A

typical term on the right-hand side of (4.6) then takes the form

f n(@,dx) f qi( 9 ,x,y) P(e,x,dy) f P k(e,y,dz) f(O,z)
S S S

which can be represented probabilistically as an expectation:

E0 [q i (  x0 ,xV 1 f( k+1

where Ee(.) is the expectation corresponding to P., and P8  is the

probability on path-space associated with initial distribution n(G) and

transition function P(e). Thus, the second term in (4.2) has the formal

representation

(4.7) EA[q i (e,)o, 1)f(i,X k+1) ]

The formula (4.7) is the key to the Monte Carlo analysis.

Each term in (4.7) can be consistently estimated (under suitable

hypotheses) via

1n-1

n I qei ( ',Xj +1 )f(,Xj+k+l)
J-0

when X evolves according to transition function P(9) (regardless of X's

initial distribution). In order to estimate the infinite sum, a standard

device is to consider an estimator of the form

1(n) 1 n-1(n)-I

(4.8) n 1 q (e,X Xj ) f(O,Xk)
k-O n-Jn) J0 i J+1 J+k+1

* 11



where the truncation point 1(n) is keyed to the sample size n in such a

way that 1(n) + - with 1(n)/n + 0. The particular choice of 1(n)

effects a compromise between bias and variance effects in estimating the

-_ infinite sum (4.7).

Since qi(q,x,y) is generally easily computable (for S countable,
1 -1

q qi(e,j,k) = (6P(e,jk)/6ej) * P(e,j,k) ), (4.7) provides a Monte Carlo

solution to estimating the appropriate gradient.

It turns out that (4.6) is closely related to a formula which one

obtains when one uses likelihood ratio change-of-measure ideas to evaluate

gradients. These connections will be explored more fully in a future

paper.

..'
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5. SUMMARY

We have shown that the gradient Va(E) of steady-state quantity a

plays a critical role in the variance and interval estimation theory for

steady-state estimators a(6) of complex stochastic systems. In some

sense, the large-sample variance and interval estimation theory is fully

solved given that one can evaluate a(e) and Va(e). Numerical methods

for dealing with a(e) when the system is Markov are, of course, well

known. However, numerical algorithms for evaluating Va(e) are a recent

development. We have therefore provided a self-contained exposition of the

relevant theory, and discuss both Monte Carlo (see (4.3) and (4.8)) and

non-Monte Carlo (see (3.9)) approaches to solving the problem.

APPENDIX

Let P(') be a family of n x n stochastic matrices which are:

(i) irreducible in a neighborhood of e
(ii) differentiable at 8.

Under (i), P(°) has a unique stationary distribution n(.) in a

neighborhood of 8. Our goal is to rigorously verify the first equation in

(3.9).

Given the existence of the inverse matrix F(O) - (I-P(O)+f(8))-',

(3.9) follows immediately once the differentiability of n(e) is

established. Note that for h sufficiently small,

T (9+he i ) - (e) = n((e+he ) t[p() + hQi(0) + o(h)] - i(e)t p(e)
i i

so

[n(8+he i ) - n()l t(I-p(e)) - hn(e+hei) t Qi(e) + o(h)

(note that o(h)n(O+hei) - o(h) since all terms in n(e+he ) are uniform-

ly (in h) bounded by 1). Since 11() has identical rows and n(8+he )
is stochastic for h > 0, it follows that [n(O+he )-n(e)]f(e) - 0. Hence,

13
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(AI) [n(O+hei) - n(G)] - hiT(+hei) t Qi(0) F(O) + o(h)

Again, since n(O+hei) is uniformly bounded in h, it is evident from (Al)

that n(O+he i ) is continuous at h - 0. Thus, (Al) implies that

4. t
[n((+he i ) - n(G)] t  hn(E) t Qi(0) F(e) + o(h)

i.e., Ii(9) t =(O)t Q1 (e) F(E)

which is the required result.
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